Warm Up:

Learning Goal: Today I will learnhow to find the volume of a cone.

Success Criteria: I am able to find the area of the base in order to calculate volume.

11-5 Volume of Cones

20

19 <u>Volume of a Cone</u>

 circle base (one) and a vertex not in the same plane

h = height of cone (inside)

r = radius of base

Volume

$$V = \frac{1}{3}\pi r^2 h$$

Example:

A cone has a <u>radius of 2</u> mm and a height of <u>6mm</u>. What is the volume?

Essential Understanding The volume of a cone is related to the volume of a cylinder with the same base and height.

The cones and the cylinder have the same base and height. It takes three cones full of rice to fill the cylinder.

Theorem 11-9 Volume of a Cone

The volume of a cone is one third the product of the area of the base and the height of the cone.

$$V = \frac{1}{3}Bh$$
, or $V = \frac{1}{3}\pi r^2h$

Problem 3 Finding the Volume of a Cone

Traditional Architecture The covering on a tepee rests on poles that come together like concurrent lines. The resulting structure approximates a cone. If the tepee pictured is 12 ft high with a base diameter of 14 ft, what is its approximate volume?

$$V = \frac{1}{3}\pi r^2 h$$
 Use the formula for the volume of a cone.
 $= \frac{1}{3}\pi (7)^2 (12)$ Substitute $\frac{14}{2}$, or 7, for r and 12 for h .
 ≈ 615.7521601 Use a calculator.

The volume of the tepee is approximately 616 ft³.

Find the volume.

$$V = \frac{1}{3} \pi (1)^{2} (3)$$
 $V = \frac{1}{3} (3) \pi$
 $V = \pi cm^{3}$

Rotations about a line

Rotate: y. 2xis V= 1/3(4)²π(3) V= 1/3(16)π(3) V= 50.3 http://www.schoolmath.jp/3d/e/student/lesson01/lesson_02.htm

e volume of the cone is $V_{cone} = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi (3)^2 (4) = 12\pi$ cubic units.

Problem 4 Finding the Volume of an Oblique Cone

What is the volume of the oblique cone at the right? Give your answer in terms of π and also rounded to the nearest cubic foot.

$$V=rac{1}{3}\pi r^2 h$$
 Use the formula for volume of a cone $=rac{1}{3}\pi (15)^2 (25)$ Substitute 15 for r and 25 for h . $=1875\pi$ Simplify.

The volume of the cone is 1875π ft³, or about 5890 ft³.

≈ 5890.486225 Use a calculator.

$$V = \frac{1}{3}\pi (4)^{2} (10.2)$$

$$V = 170.9 \text{ cm}^{3}$$

Nhat is the volume of the oblique cone below? Give your answer in terms of π and also rounded to the nearest cubic inch.

16 in.

ANSWER

or about

Landscaping To landscape her 70 ft-by-60 ft rectangular backyard, your aunt is planning first to put down a 4-in. layer of topsoil. She can buy bags of topsoil at \$2.50 per 3-ft³ bag, with free delivery. Or, she can buy bulk topsoil for \$22.00/yd³, plus a \$20 delivery fee. Which option is less expensive? Explain.

$$1 \text{ yd}^3 = 27 \text{ ft}^3$$

Chemistry This cone has a filter that was being used to remove impurities from a solution but became clogged and stopped draining. The remaining solution is represented by the shaded region. How many cubic centimeters

of the solution remain in the cone?

Find the thickness x of the hollow cylinder of height 100 cm if the volume between the inner and outer cylinders is equal to 1100π cm³ and the outer diameter is 12 cm.

volume of the solid is $V = \frac{4}{3}\pi r_2^3 - \frac{4}{3}\pi r_1^3 = \frac{4}{3}\pi 5^3 - \frac{4}{3}\pi 3^3 = 130\frac{2}{3}\pi$ cubic units.

ioor mica die chare space as a revorved, a cymatical some would be formed

With the idea of revolution (rotation) in mind,

Closure: Today I learned how to use the base area and height to calculate volume.