4.6 Graphing the Other Trigonometric Functions

The Graph of:

$$y = \tan x$$

as it relates to the Unit Circle

| $\mathcal{X}$ | $y = \tan x$ |
|---------------|--------------|
| 0             | 0            |
| $\pi/4$       | 1            |
| $\pi/2$       | Jnd & Fin    |
| $3\pi/4$      | 1            |
| π             | 0            |
| 5π/4          | 1            |
| 3π/2          | ひって          |
| $7\pi/4$      | - 1          |
| 2π            |              |



**♦**(0,1)

Where are the asymptotes?

| х     | $-\frac{\pi}{2}$ | -1.57   | -1.5  | $-\frac{\pi}{4}$ | 0 | $\frac{\pi}{4}$ | 1.5  | 1.57   | $\frac{\pi}{2}$ |
|-------|------------------|---------|-------|------------------|---|-----------------|------|--------|-----------------|
| tan x | Undef.           | -1255.8 | -14.1 | -1               | 0 | 1               | 14.1 | 1255.8 | Undef.          |

 $\tan x$  approaches  $-\infty$  as x approaches  $-\pi/2$  from the right.

 $\tan x$  approaches  $\infty$  as x approaches  $\pi/2$  from the left.

### Library of Parent Functions: Tangent Function \_

The basic characteristics of the parent tangent function are summarized below and on the inside cover of this text.



Figure 4.55

Domain: all real numbers x,

$$x\neq \frac{\pi}{2}+n\pi$$

Range:  $(-\infty, \infty)$ 

Period: π

x-intercepts:  $(n\pi, 0)$ 

y-intercept: (0,0)

Vertical asymptotes:  $x = \frac{\pi}{2} + n\pi$ 

Odd function Origin symmetry Graphing the Tangent and Cotangent Functions in the Calculator

Mode Window Graph

$$y = a \tan(bx)$$
  
 $y = a \cot(bx)$ 

How does the a value change the graph? Change window to  $-4_{\Pi}$ ,  $4_{\Pi}$  and -5, 5, and experiment with a values

How does the b value change the graph? Change the a value back to 1, and experiment with b values

# Sketch the graph of $y = \tan \frac{x}{2}$ by hand.



| x                  | -π     | $-\frac{\pi}{2}$ | 0 | $\frac{\pi}{2}$ | π      |
|--------------------|--------|------------------|---|-----------------|--------|
| $\tan \frac{x}{2}$ | Undef. | -1               | 0 | 1               | Undef. |

## Sketch the graph of $y = -3 \tan 2x$ by hand.

| x         | $-\frac{\pi}{4}$ | $-\frac{\pi}{8}$ | 0 | $\frac{\pi}{8}$ | $\frac{\pi}{4}$ |
|-----------|------------------|------------------|---|-----------------|-----------------|
| -3 tan 2x | Undef.           | 3                | 0 | -3              | Undef.          |



### **Graph of the Cotangent Function**



### Library of Parent Functions: Cotangent Function \_

The graph of the parent cotangent function is similar to the graph of the parent tangent function. It also has a period of  $\pi$ . However, from the identity

$$f(x) = \cot x = \frac{\cos x}{\sin x}$$

you can see that the cotangent function has vertical asymptotes when  $\sin x$  is zero, which occurs at  $x = n\pi$ , where n is an integer. The basic characteristics of the parent cotangent function are summarized below and on the inside cover of this text.



Domain: all real numbers  $x, x \neq n\pi$ 

Range:  $(-\infty, \infty)$ 

Period: π

x-intercepts:  $\left(\frac{\pi}{2} + n\pi, 0\right)$ 

Vertical asymptotes:  $x = n\pi$ 

Odd function Origin symmetry



| x                  | 0      | $\frac{3\pi}{4}$ | $\frac{3\pi}{2}$ | $\frac{9\pi}{4}$ | 3π     |
|--------------------|--------|------------------|------------------|------------------|--------|
| $2\cot\frac{x}{3}$ | Undef. | 2                | 0                | -2               | Undef. |

Find the period!



Domain: all real numbers x,

$$x \neq \frac{\pi}{2} + n\pi$$

Range:  $(-\infty, \infty)$ 

Period: π



Domain: all real numbers x,

$$x \neq n\pi$$

Range:  $(-\infty, \infty)$ 

Period: π