What You Should Learn

- Evaluate and graph inverse sine functions
- Evaluate and graph other inverse trigonometric functions
- Evaluate compositions of trigonometric functions

One-to-one

What does that mean?

A function must be one-to-one to have an inverse.

One-to-one?

Can I make it one to one?

Let $f(x) = \sin x$.

a. Graph f on the interval $[-2\pi, 2\pi]$.

b. Is $f(x) = \sin x$ a one-to-one function? _____? Why or Why not? ______?

Therefore, we must restrict the domain of f to make it one-to-one. We want to restrict the domain as

close to the origin as possible. We restrict the domain of f to $\frac{1}{2}$ to make it a one-to-one function.

it is obvious that $y = \sin x$ does not pass the test because different values of x yield the same y-value.

sin *x* has an inverse function on this interval.

However, when you restrict the domain to the interval $-\pi/2 \le x \le \pi/2$ (corresponding to the black portion)

- **1.** On the interval $[-\pi/2, \pi/2]$, the function $y = \sin x$ is increasing.
- **2.** On the interval $[-\pi/2, \pi/2]$, $y = \sin x$ takes on its full range of values, $-1 \le \sin x \le 1$.
- **3.** On the interval $[-\pi/2, \pi/2]$, $y = \sin x$ is one-to-one.

$$y = \arcsin x$$
 or $y = \sin^{-1} x$.

The notation $\sin^{-1} x$ is consistent with the inverse function notation $f^{-1}(x)$. The arcsin x notation (read as "the arcsine of x") comes from the association of a central angle with its intercepted *arc length* on a unit circle.

So, arcsin x means the angle (or arc) whose sine is x. Both notations, arcsin x and $\sin^{-1} x$, are commonly used in mathematics, so remember that $\sin^{-1} x$ denotes the *inverse* sine function rather than $1/\sin x$. The values of arcsin x lie in the interval $-\pi/2 \le \arcsin x \le \pi/2$.

 $y = \sin x$

Need to restrict domain so it remains a function

Inverse Functions: switch domain and range (x and y)

can put in your calculator $y=\sin^{-1}x$

Change window for your x and y.

- 1. $\arcsin(\frac{1}{2})$ $\frac{\pi}{6}$
- 2. $\sin^{-1}(\frac{1}{2}) \frac{\pi}{6}$
- 3. $\arcsin(-\frac{1}{2}) \frac{\pi}{6}$
- 4. $\arcsin(-\frac{\sqrt{2}}{2})$ $-\frac{\pi}{4}$

5. $\sin^{-1}(2)$

The Inverse Cosine Function

Let $f(x) = \cos x$.

a. Graph f on the interval $[-2\pi, 2\pi]$

b. Since $f(x) = \cos x$ is not a one-to-one function we must restrict the domain of f to make it one-to-one. Therefore, we restrict the domain of f to $\frac{O}{1000}$ to make it a one-to-one function.

Other Inverse Trigonometric Functions

The cosine function is decreasing and one-to-one on the interval $0 \le x \le \pi$, as shown in Figure 4.69.

Figure 4.69

Other Trig Functions--p. 311

 $\cos^{-1}(x)$ arccos (x)

y = arcos(x) if and only if $cos y = x - 1 \le x \le 1$ $0 \le y \le \pi$

- 1. $\arccos(\frac{1}{2})$ $\frac{\pi}{3}$ 2. $\cos^{-1}(-\frac{\sqrt{3}}{2})$ $\frac{5}{3}$
- $3. \arccos(-1)$
- 4. $\cos^{-1}(0) \frac{\pi}{2}$

y = arcos(x) if and only if $cos y = x - 1 \le x \le 1$ $0 \le y \le \pi$

The Inverse Tangent Function

Let $f(x) = \tan x$.

a. Graph f on the interval $[-2\pi, 2\pi]$.

d. Since $f(x) = \tan x$ is not a one-to-one function we must restrict the domain of f to make it one-to-one. Therefore, we restrict the domain of f to f to make it a one-to-one function.

$tan^{-1}(x)$ a.k.a. arctan(x)

Function	Domain	Range
arcsin sin -1	-1 ≤ x ≤1	$\frac{-\pi}{2} \le y \le \frac{\pi}{2}$
arccos cos -1	-1 ≤ x ≤1	$0 \le y \le \pi$
arctan tan -1	-∞ ≤ x ≤ ∞	$\frac{-\pi}{2} < y < \frac{\pi}{2}$

- 1. $\arctan(1) \frac{\pi}{4}$
- 2. $tan^{-1}(0)$ 0
- 3. $\arctan(\frac{\sqrt{3}}{3}) \frac{\pi}{6}$ 4. $\arctan(-\frac{\sqrt{3}}{3}) -\frac{\pi}{6}$

Compositions of Functions

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$

```
Inverse Properties

If -1 \le x \le 1 and -\pi/2 \le y \le \pi/2, then

\sin(\arcsin x) = x and \arcsin(\sin y) = y.

If -1 \le x \le 1 and 0 \le y \le \pi, then

\cos(\arccos x) = x and \arccos(\cos y) = y.

If x is a real number and x and x arctan(x) arctan(x) and x arctan(x) arctan(x) arctan(x) and x arctan(x) arctan(x
```

Keep in mind that these inverse properties do not apply for arbitrary values of x and y. For instance,

$$\arcsin\left(\sin\frac{3\pi}{2}\right) = \arcsin\left(\sin\frac{3\pi}{2}\right)$$

ex. tan(arctan (- 5)

arcsin (sin 5π)

3

not in range need to rewrite

ex.

$$\tan(\arccos\frac{2}{3})$$

$$cos(arcsin(-3))$$

24