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5.5 Multiple-Angle and Product-to-Sum Formulas
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Double Angle Formulas

rDuuhIt—hnglt Formulas (See the proofs on page 401.)

2 tan u
| — tan® u

gsin 2 = 2 51N 4 COs U tan 2u =

cos 21 = cos? u — sin® i

2eosiu— |

1 — 2sin® i
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Solve 2cosx + sin2x=0
sin 2u = 2 sIn 4 COSs u

Q CO S x I—')s;nsl(osy -6

QCoSy (( + 3'-“_\)‘\:0

(.O_Sx:o s'.f\’(:-r
Solution

Begin by rewriting the eguation so that it involves functions of x (rather than 2x). Then
factor and solve as usual.

2cos x + sin 2v =
2oosxy + 2sinxcosx = 0

Peoosxll + sinx) =0

2ecosx =0 I +sinx =0
cosxy = 0 sinxy = —1
w 3 3w
*=3 =
50, the general solution is
.r=§+2n1.‘ and _1.'=?+2n1.'

Write original equation.
Doublbe-angle formula
Factor.

Set factors equal to zero.

Isolate rigonometric functicns.

Zolutions in [0, 2w}

General solution

where n is an integer. Try verifying this solution graphically.
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Partner: One paper per team np
5
Given: cosf=— 3—ﬂ<¢9<27z
13 2
Find:
cos 20
sin 20

tan 20
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Use the following to find sin 26, cos 26, and tan 26,
3 im "

cos # = —, — < <2 — NS,
13 E -4 -2 \\__ 62 af s
—44
. 13 - 12
In Figure 5.24, you can see that B
i ¥ 12 1
s5in @ = - = 13 _w4+
and -2 (5,-12)
tan & = —%_

Consequently, using each of the double-angle formulas, you can write the double angles
as follows.

sin 26 = 2 sin # cos & cos 28 = 2cos28 — 1
2 12 5 - 25 |
- ( 1;)(13) N _(Iﬁg)
_ _120 _ _1I'51'
T 169 T 169
¥ —17
tan 26 = 2tan # 2(—12/5) _ 120

1 —tan?® 1 — (—12/52 119
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The double-angle formulas are not restricted to the angles 28 and #. Other double
combinations, such as 48 and 26 or 66 and 38, are also valid. Here are two examples.

sin 48 = 2 sin 28 cos 287 and cos 68 = cos” 38 — sin” 38

By using double-angle formulas together with the sum formulas denived in the preceding
section, you can form other multiple-angle formulas.



5.5 hpc.notebook February 21, 2020

Notecard
Power Reducing Formulas

i Power-Reducing Formulas  (See the proofs on page 401.)

Gin? = | — cos 2u

2
5 1 + cos 2u

cos’ i =

2
tn? g = I — cos 2u
‘T 1 + cos 2u
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Notecard

4 Half-Angle Formulas

u \/l—msu I \/1+cu5u
gin — = =+ — Cos — = —
2 2 2 2

| —cosu SR,

sin | + cos u

Lan

b2 | &=

depend on the quadrant in which % lies.

I I
= and cos =

The signs of sin 3 3

b
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Using the half angle formula

Find the exact value of sin 105,

What angle would we use to get 105, that is on the unit
circle? What if | doubled 105 to get 210, is that on the unit
circle? Now use the half angle formula.

Solution

Begin by noting that 105% is half of 210° Then, using the half-angle formula for
sinfu/2) and the fact that 105° lies in Quadrant II, you have

— cos 2
sin 105° = \/E
2
. I — (—cos 30°)
) 2
_ N1+(3)_J2+ 3
&= . o e

The positive square root 1s chosen because sin #1s positive in Quadrant 11
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Technology Tip

Use your calculator
to verify the result
obtained in Example 5.
That is, evaluate sin 105° and
(V2 + +3)/2. You will notice
that both expressions yield the
same result.

February 21, 2020
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Notecard

i Product-to-5um Formulas
1
sin K sin v = E[cus{u — v) — cos(u + v)]

COS U COS V = E[::ns{u — v) + cos(u + v)]

Sin M COS v = %[:-‘.in{u + v) + sin(u — v)]

Cos usiny = é[:-‘.in{u + v) — sin(u — v)]

11
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Fewnte the product as a sum or difference.

cos 5x sin 4y

. 1T )
cos usiny = ;[sm(u + v) — sin(u — v)]

np

12
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Solution

Using the appropriate product-to-sum formula, you obtain
1
cos Sx sin 4y = E[ﬁin{ﬁ.r + 4x) — sin(5x — 4x)]

1 1 .
= —sin 9y — ;F.ll'.l..'l.'-

Can not simplify any more

13
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Find all solutions of | + cosx = 2 cos’ % in the interval [0, 2).

Algebraic Solution

x
1 + costx = 2 cos? E Write original equation.
2
a 1 + cosx
1 + costx = 2|+ T Half-angle formula
l + cos?Tx =1+ cosx Simplify.
coslxy —cosx =0 Simplify.
cos x{fcosx — 1) = 0 Factor.

By setting the factors cos x and cos x — 1 equal to zero, yvou find that
the solutions in the interval [0, 27) are x = #7/2, x = 3%/2, and

x = (.

Graphical Solution

- -
3 | v= 1 + o8- x— 2 cos-

I=d| =

|

The x-intercepis ang
=0, r= 1571, and —__
xe==d T2 -
= —| 2w
Lara
=3 SR Y wvEm
-1

Figure 5.26
From Figure 526, you can conclude that the approximate

. A -
solutions of 1 + cos®x = 2 cos® 5 In the interval [0, 2m)
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Notecard

(" Sum-to-Product Formulas (See proof on page 402.)

) i fu T H—V
5mu+r.mr=2:am( = ):us( = )

i N uw+ v fu—w
sl — sin v = 2 COs = S0 =

i

fm vy  fu—vw
cmu—cu-ﬁl:=—25m( 5 )EIII( )

COs W+ Ccos v

2

15
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Find the exact value of ¢0s195° + cos105°

u+v u—v
cos u + cosv = 2 cos 5 cOs =

February 21, 2020

np

16
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Solution

Using the appropriate sum~to-product formula, you obtain

February 21, 2020

cos 195° + cos 105° = 2 EDE( 5

= 2 cos 150° cos 45°

_ (_ﬂ](i]

- 2 2

195° + IEIE"') (195" - Iﬂi“)
COS

17
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Technology Tip

(T YOu can use a graphing

utility to venfy the
solution in Example 7.

Graph v, = cos 5x sin 4x and
Vo = ; sin 9x — %:-'.inxinthe
same viewing window. Notice
that the graphs coincide. So,
you can conclude that the two
expressions are equivalent.

February 21, 2020

18
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v =sin Sx + sin 3x

Find all solutions of

sin 3y + sin3x =10 ure 527

Notice that the general solution is

in the interval [0, 2). T

where n 15 an integer.

Solution
sin 5x + sin 3x = 0 Wnte original eguation.
 5x + 3x S5x — 3x
2 5in T COs T =0 Sum-to-product formula
2sindrcosx = 0 Simplify.

By setting the factor sin 4x equal to zero, you can find that the solutions in the interval

[0, 2%) are
_n:n':n'3 5 3 r
eV ™

The equation cos x = () yields no additional solutions. You can use a graphing ntility to
confirm the solutions, as shown in Figure 5.27.
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lgebraal
Biample4 Reducing a Power J**

Rewrite sin* x as a sum of first powers of the cosines of multiple angles.

sin x = {Einl I]z Property of exponcnts
1 — cos 2xh°

= f Powver-reducing fonmola
1 ]

= 1{1 — 2 cos 2x + cos® 2x) Expand binomial.
1 1 + cos dx

=—|1 — 2cos 2y + ——— Power-roducing formola
4 2
1 1 1 1

= I — —cos 2v + E + —cos dx Distribative Property
3 1 |

= — — —poos 2y + — oDs dy Simplity.
= &
1

= 5{3 — 4 cos 2y + cos dx) Facior.

YWou can use a graphing utility to check this result, as shown in Figure 5.25. Notice that
the graphs coincide.

4.

¥ = %in

Sl

7L -
¥y = %i.‘- = 4 ¢os 2x + CO8 —1.r:|]

v T
-2




5.5 hpc.notebook February 21, 2020

5.5 hw is long, and at times challenging!

You have all of the background knowledge, skills, and
formulas necessary to complete the problems.

I don't want to beat you to death with example

problems, so....
* think
* apply
e attack

* be creative
* clearly show all work
* take your time
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February 21, 2020
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Rewrite sin*x as first powers

February 21, 2020

23
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Given: cos0=7, 3r<0<2m
2b 2

Find: cos
2

February 21, 2020

24
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Use half angle formulas to find:

sin 105¢

February 21, 2020

25
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Write cos 3x cos 2x as a sum or difference

February 21, 2020

26
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Write cos 4x + cos 2x as a product

February 21, 2020

27
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February 21, 2020
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Solve: 2 cos x + sin2x =0

February 21, 2020

29
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