Write each expression in radical form.

1)
$$(10x)^{\frac{3}{4}}$$

2) $(2x)^{\frac{6}{5}}$

Write each expression in exponential form.

4)
$$(\sqrt{7x})^3$$

5)
$$(x^6)^{\frac{1}{2}}$$

6)
$$(343x^9)^{\frac{2}{3}}$$

Notes: 6.2 Applying Prop. of Exponents of Rational Exponents

Review:

$$x^2 \cdot x^3 =$$

$$x^{-3} =$$

$$\frac{x^6}{x^2} = \boxed{ }$$

$$(x^2 y)^2 = \boxed{ }$$

$$\left(\frac{x^2}{y^3}\right)^2 = \boxed{ }$$

Properties of Rational Exponents

Let a and b be real numbers and let m and n be rational numbers. The following properties have the same names as those listed on page 330, but now apply to rational exponents as illustrated.

Property

1.
$$a^m \cdot a^n = a^{m+n}$$

2.
$$(a^m)^n = a^{mn}$$

3.
$$(ab)^m = a^m b^m$$

4.
$$a^{-m} = \frac{1}{a^m}, a \neq 0$$

5.
$$\frac{a^m}{a^n} = a^{m-n}, a \neq 0$$

6.
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, b \neq 0$$

Example

$$5^{1/2} \cdot 5^{3/2} = 5^{(1/2 + 3/2)} = 5^2 = 25$$

$$(3^{5/2})^2 = 3^{(5/2 \cdot 2)} = 3^5 = 243$$

$$(16 \cdot 9)^{1/2} = 16^{1/2} \cdot 9^{1/2} = 4 \cdot 3 = 12$$

4.
$$a^{-m} = \frac{1}{a^m}$$
, $a \neq 0$ $36^{-1/2} = \frac{1}{36^{1/2}} = \frac{1}{6}$

5.
$$\frac{a^m}{a^n} = a^{m-n}, a \neq 0$$
 $\frac{4^{5/2}}{4^{1/2}} = 4^{(5/2-1/2)} = 4^2 = 16$

6.
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, b \neq 0$$
 $\left(\frac{27}{64}\right)^{1/3} = \frac{27^{1/3}}{64^{1/3}} = \frac{3}{4}$

Quick practice review:

$$\chi^{-3}$$

$$\left(\frac{x^2}{y^3}\right)^2$$

$$(3x^2y^3)^4$$

$$\chi^{-2} \bullet \chi^{-3}$$

6.2 d1.notebook

January 08, 2020

$$3x^{\frac{3}{2}} \cdot 4x^3$$

$$\left(x^{\frac{1}{2}}y^{\frac{4}{5}}\right)^{\frac{4}{3}}$$

Applying Prop to Rational Exponents

$$x^{1/3} \bullet x^{2/3}$$

$$x^{1/2} \bullet x^{1/4}$$

$$\left(\frac{x^{15}}{y^6}\right)^{\frac{1}{3}}$$

$$\sqrt[3]{27x^5y^9}$$

$$\sqrt[4]{32x^5y^4}$$

KEY CONCEPT

For Your Notebook

Properties of Radicals

Product property of radicals

$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

Quotient property of radicals

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}, b \neq 0$$

EXAMPLE 3

Use properties of radicals

Use the properties of radicals to simplify the expression.

a.
$$\sqrt[3]{12} \cdot \sqrt[3]{18} = \sqrt[3]{12 \cdot 18} = \sqrt[3]{216} = 6$$
 Product property

b.
$$\frac{\sqrt[4]{80}}{\sqrt[4]{5}} = \sqrt[4]{\frac{80}{5}} = \sqrt[4]{16} = 2$$

Quotient property

$$\sqrt[3]{125} \cdot \sqrt[3]{8}$$

$$\frac{\sqrt[5]{96}}{\sqrt[5]{3}}$$

To add or subtract radicals, the radicand must be the same! Always simplify the radical.

Adding/Subtracting *must have common radicand!

$$3\sqrt{2} + 8\sqrt{2}$$

$$3(2)^{1/3} - 4(2)^{1/3}$$

$$4\sqrt[3]{54} - 3\sqrt[3]{2}$$

What do you do if it doesn't have the same radicand? Simplify the radical to see if it will be the same.

3)
$$-3\sqrt{3} + 3\sqrt{6} - 2\sqrt{24}$$

https://create.kahoot.it/details/30379d87-fd8f-48ed-bc58-4c9ba0f064c3

https://create.kahoot.it/details/070b6d05-d018-4f32-b62c-1b3d0ec4eb45

Whiteboard Practice

1)
$$-2\sqrt{18} - 2\sqrt{18}$$

3)
$$-3\sqrt{27} + 2\sqrt{27}$$

2)
$$-\sqrt{3} + 2\sqrt{3}$$

4)
$$-\sqrt{6} + 2\sqrt{24}$$

6)
$$-2\sqrt{8} - \sqrt{18}$$

Write each expression in radical form.

Write each expression in exponential form.

3)
$$\sqrt{384x^3}$$

5) $\sqrt{200a^4b^3}$

6) $\sqrt[3]{512x^6y^8}$

7) $6\sqrt{32p}$

8) $-7\sqrt{108v^3}$

6)
$$\sqrt[6]{4x^2} \cdot \sqrt[6]{400x^4}$$

7)
$$-2\sqrt[4]{10b^4} \cdot 2\sqrt[4]{375b^2}$$

8)
$$-2\sqrt[3]{-6p^2} \cdot 3\sqrt[3]{12p^4}$$

6.2 d1.notebook January 08, 2020