6.3 Vectors

http://www.youtube.com/watch?v=A05n32Bl0aY

Component Form of a Vector

A vector whose initial point is at the origin (0, 0) can be represented by the coordinates of its terminal point (v_1, v_2) .

$$\mathbf{v} = \langle v_1, v_2 \rangle$$

The component form of the vector with initial point $P = (x_1, y_1)$ and terminal point $Q = (x_2, y_2)$ is:

$$< v_1, v_2 > = (x_2 - x_1, y_2 - y_1)$$

The **magnitude** (or length) of v is:

$$||v|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $||v|| = \sqrt{v_1^2 + v_2^2}$

Vector: has magnitude (length) and direction

Component Form of a Vector

The component form of the vector with initial point $P(p_1, p_2)$ and terminal point $Q(q_1, q_2)$ is given by

$$\overrightarrow{PQ} = \langle q_1 - p_1, q_2 - p_2 \rangle = \langle v_1, v_2 \rangle = \mathbf{v}.$$

The magnitude (or length) of v is given by

$$\|\mathbf{v}\| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2} = \sqrt{v_1^2 + v_2^2}.$$

If $\|\mathbf{v}\| = 1$, then \mathbf{v} is a **unit vector.** Moreover, $\|\mathbf{v}\| = 0$ if and only if \mathbf{v} is the zero vector $\mathbf{0}$.

Find the component form and magnitude of the vector \mathbf{v} that has initial point (4, -7) and terminal point (-1, 5).

Vector Operations

Geometrically, the product of a vector and a scalar k is . . . the vector that is k times as long as vIf k is positive, kv has the <u>same</u> direction as v, and if k is negative, kv has the <u>opposite</u> direction.

To add two vectors geometrically, position them so the initial point of one coincides with the terminal point of the other

This technique is called the parallelogram law for vector addition because the vector u+v, often called the resultant of vector addition, is . . . the diagonal of a parallelogram with u and v as sides

Definition of Vector Addition and Scalar Multiplication

Let $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ be vectors and let k be a scalar (a real number). Then the sum of \mathbf{u} and \mathbf{v} is the vector

$$\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$$
 Sum

and the scalar multiple of k times u is the vector

$$k\mathbf{u} = k\langle u_1, u_2 \rangle = \langle ku_1, ku_2 \rangle$$
. Scalar multiple

Properties of Vector Addition and Scalar Multiplication

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors and let c and d be scalars. Then the following properties are true.

1.
$$u + v = v + u$$

2.
$$(u + v) + w = u + (v + w)$$

3.
$$u + 0 = u$$

4.
$$u + (-u) = 0$$

5.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

$$6. (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

8.
$$1(\mathbf{u}) = \mathbf{u}, 0(\mathbf{u}) = \mathbf{0}$$

9.
$$||c\mathbf{v}|| = |c| ||\mathbf{v}||$$

Let $\mathbf{u} = \langle 1, 6 \rangle$ and $\mathbf{v} = \langle -4, 2 \rangle$.

Sketch the operations geometrically.

Then find:

(b)
$$\mathbf{u} + \mathbf{v}$$

Let $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ be vectors and let k be a scalar

$$\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$$
 (vector addition)

$$k\mathbf{u} = \langle \mathbf{k}\mathbf{u}_1, \mathbf{k}\mathbf{u}_2 \rangle$$
 (Scalar multiplication)

$$u = <4,6> v = <-2,5>$$

Find the following: Graphically and algebraically

- a. 2u 3v
- b. u + 2v
- c. 2u + 3v

(omponent form

Vector Activity

Linear combination Form 2:+4; http://www.youtube.com/watch?v=fVq4_HhBK8Y

Airplane

$$u = unit vector = \frac{v}{\|v\|} = \left(\frac{1}{\|v\|}\right)v$$

$$||v|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Find a unit vector in the direction of $\mathbf{v} = \langle -8, 6 \rangle$.

$$\frac{v}{\|v\|}$$

Find a unit vector u in the direction of $v = \langle 7, -3 \rangle$ and verify that the result has magnitude 1.

find the unit vector then use in $\|v\| = \sqrt{\left(v_1\right)^2 + \left(v_2\right)^2}$

Find the vector v with the given magnitude and same direction as u.

$$||v|| = 3$$
 $u = \langle 4, -4 \rangle$

find the unit vector multiply it by the magnitude

Standard Unit Vectors:

$$i = <1, 0> j = <0, 1>$$

Linear Combination

Vector
$$\mathbf{v} = \langle v_1, v_2 \rangle$$

can also be represented as:

$$\mathbf{v} = \langle v_1, v_2 \rangle$$

$$= v_1 \langle 1, 0 \rangle + v_2 \langle 0, 1 \rangle$$

$$= v_1 \mathbf{i} + v_2 \mathbf{j}$$

Let
$$u = -3i+8j$$
 and $v = 2i - j$.
Find $2u - 3v$

Let $\mathbf{v} = \langle -5, 3 \rangle$. Write \mathbf{v} as a linear combination of the standard unit vectors \mathbf{i} and \mathbf{j} .

Direction Angles

If \mathbf{u} is a unit vector such that $\boldsymbol{\theta}$ is the angle (measured counter clockwise) from the positive x-axis to u, then the terminal point of \mathbf{u} lies on the unit circle

$$u = \langle x, y \rangle = \langle \cos \theta, \sin \theta \rangle = \cos \theta i + \sin \theta j$$

The angle θ is the direction angle of vector u.

$$v = ||v|| \langle \cos \theta, \sin \theta \rangle = ||v|| (\cos \theta) i + ||v|| (\sin \theta) j$$

Vector \mathbf{v} has direction angle $\theta = 30^{\circ}$ and magnitude 6. Find \mathbf{v} .

$$v = \|6\| \langle \cos 30^o, \sin 30^o \rangle = \|v\| (\cos \theta) i + \|v\| (\sin \theta) j$$

$$\tan \theta = \frac{\|v\| \sin \theta}{\|v\| \cos \theta} = \frac{b}{a}$$
v=ai + bj

You must pay attention to what quadrant you are in!

Find the direction angle of each vector.

a.
$$u = 3i + 3j$$

$$\tan \theta = \frac{\|v\| \sin \theta}{\|v\| \cos \theta} = \frac{b}{a}$$

b.
$$v = 3i - 4j$$

Find the component form of the vector that represents the velocity of an airplane descending at a speed of 100 miles per hour at an angle of 30° below the horizontal, as shown in Figure 6.32.

The velocity vector v has a magnitude of 100 and a direction angle of $\theta = 210^{\circ}$

$$\mathbf{v} = \|\mathbf{v}\|(\cos \theta)\mathbf{i} + \|\mathbf{v}\|(\sin \theta)\mathbf{j}$$
= 100(\cos 210^\circ)\mathbf{i} + 100(\sin 210^\circ)\mathbf{j}

= 100\left(-\frac{\sqrt{3}}{2}\right)\mathbf{i} + 100\left(-\frac{1}{2}\right)\mathbf{j}

= -50\sqrt{3}\mathbf{i} - 50\mathbf{j}

= \left(-50\sqrt{3}, -50\right)

To find the angle:
$$\tan \theta = \frac{-50}{-50\sqrt{3}}$$

You can check that v has a magnitude of 100 as follows.

$$\|\mathbf{v}\| = \sqrt{(-50\sqrt{3})^2 + (-50)^2}$$

= $\sqrt{7500 + 2500}$
= $\sqrt{10,000}$
= 100 Solution checks. \checkmark

Using Vectors to Find Speed and Direction Example 10 p.416

An airplane is traveling at a speed of 500 mph with a bearing of 330°. The airplane encounters a wind blowing 70 mph in the direction N 45° E. What are the resultant speed and direction of the airplane? Bearing starts at N.

direction:

The initial point of a vector is (-6, 4) and the terminal point is (0, 1) Write a linear combination of the standard vector.

Find the component form of V given its magnitude and angle.

$$||v|| = 4$$
, $\theta = 45^{\circ}$

Applications of Vectors

force / velocity / tension = magnitude / length

also think: Geometry, right triangle trig, law of cosines and sines

Highlight of Important Vocab / Formulas:

Component Form: $\mathbf{v} = \langle \mathbf{v_1}, \mathbf{v_2} \rangle$ found by subtracting x values and y values of points

found by:
$$\frac{Magnitude: ||v||}{\sqrt{v_1^2 + v_2^2}} \text{ or the distance formula}$$
Unit Vector: $\underline{\mathbf{v}}$
 $||\mathbf{v}||$

Linear Combination of v: $\mathbf{v_1i} + \mathbf{v_2j}$

Direction Angles:
$$\mathbf{v} = ||\mathbf{v}|| \cos \theta ||\mathbf{i}|| + ||\mathbf{v}|| \sin \theta ||\mathbf{j}||$$

If $\mathbf{v} = \mathbf{a}\mathbf{i} + \mathbf{b}\mathbf{j}$, then $\tan \theta = \frac{b}{a}$

Using Vectors to Find Speed and Direction

An airplane is traveling at a speed of 500 mph with a bearing of 330°. The airplane encounters a wind blowing 70 mph in the direction N 45° E. What are the resultant speed and direction of the airplane?

Using Vectors to Find Speed and Direction Example 10 p.416

o clockwise from N

An airplane is traveling at a speed of 500 mph with a bearing of 330°. The airplane encounters a wind blowing 70 mph in the direction N 45° E. What are the resultant speed and direction

of the airplane?

plane: 500 cos 120, 500 sin 120 500 (-1/2), 500 53

<-250, 250/3>

Plane wind:

<-200.5,482.5>