Warm Up

$$1.1\sqrt{3} + 5\sqrt{3}$$

2.
$$4\sqrt{8} + 3\sqrt{2}$$

3.
$$\sqrt[3]{4} \cdot \sqrt[3]{6}$$
 $\sqrt[4]{4} \cdot \sqrt[4]{2} \cdot \sqrt[3]{3}$
 $\sqrt[4]{4} \cdot \sqrt[4]{2} \cdot \sqrt[3]{3}$

3.
$$\sqrt[3]{4} \cdot \sqrt[3]{6}$$
 $\sqrt[3]{4} \cdot \sqrt[3]{6}$
 $\sqrt[3]{4} \cdot \sqrt[3]{2}$
 $\sqrt[4]{16} = \sqrt[3]{2}$
 $\sqrt[4]{16} = \sqrt[3]{2}$
 $\sqrt[4]{16} = \sqrt[4]{2}$
 $\sqrt[4]{16$

5.
$$\frac{2}{\sqrt{3}} \sqrt{3}$$

6.
$$\frac{\sqrt{2}}{\sqrt{5}} \sqrt{5} \sqrt{5}$$

Combination of Functions

If f(x) and g(x) both exist, the sum, difference, product, quotient and composition of two functions f and g are

defined by
$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

$$(\frac{f}{g})(x) = \frac{f(x)}{g(x)} \text{ where } g(x) \neq 0$$

Sum, Difference, Product, and Quotient of Functions

Let f and g be two functions with overlapping domains. Then, for all x common to both domains, the sum, difference, product, and quotient of f and g are defined

- as follows.

 1. Sum: (f+g)(x) = f(x) + g(x)2. Difference: (f-g)(x) = f(x) g(x)3. Product: $(fg)(x) = f(x) \cdot g(x)$ 4. Quotient: $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \quad g(x) \neq 0$

Find (a)
$$(f+g)(x)$$
, (b) $(f-g)(x)$, (c) $(fg)(x)$, and $(f/g)(x)$

$$f(x) = 2x - 5$$
, $g(x) = 1 - x$

a.)
$$(f + g)(x) = 2x - 5 + 1 - x = x - 4$$

b.) $(f - g)(x) = 2x - 5 - (1 - x) = 3x - 6$

$$(t^2)(9^2-5x_5+2x-2)$$

 $5x-5x_5-2+2x$
 $(x^2)(y^2)(3x-2)(1-x)$

$$\left(\frac{3}{b}\right)(x) = \frac{1-x}{2^{x}-2}$$

Sum, Difference, Product, and Quotient of Functions

Let f and g be two functions with overlapping domains. Then, for all x common to both domains, the sum, difference, product, and quotient of f and g are defined

1. Sum:
$$(f+g)(x) = f(x) + g(x)$$

2. Difference:
$$(f - g)(x) = f(x) - g(x)$$

3. Product:
$$(fg)(x) = f(x) \cdot g(x)$$

as follows.

1. Sum:
$$(f+g)(x) = f(x) + g(x)$$

2. Difference: $(f-g)(x) = f(x) - g(x)$

3. Product: $(fg)(x) = f(x) \cdot g(x)$

4. Quotient: $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \quad g(x) \neq 0$

Let
$$f(x) = x^2 + 1$$
 and $g(x) = 3x + 5$
 $(f - g)(x)$
 $(f - g)(-3)$
 $(f - g)(-3)$

Sum, Difference, Product, and Quotient of Functions

Let f and g be two functions with overlapping domains. Then, for all x common to both domains, the sum, difference, product, and quotient of f and g are defined as follows.

- **1.** Sum: (f+g)(x) = f(x) + g(x)
- **2.** Difference: (f g)(x) = f(x) g(x)
- **3.** Product: $(fg)(x) = f(x) \cdot g(x)$
- **4.** Quotient: $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \quad g(x) \neq 0$

Let
$$f(x) = x^2 + 1$$
 and $g(x) = 3x + 5$

$$(f \cdot g)(5) \quad (x^{2} + 1)(3x + 5)$$

$$3x^{3} + 5x^{3} + 3x^{4} 5$$

$$3(5)^{3} + 5(5)^{3} + 3(5) + 5$$

$$375 + 125 + 15 + 5$$

$$5.20$$

Perform the indicated operation.

1)
$$h(n) = 2n + 1$$

 $g(n) = n^2 + 4n$
Find $h(n) + g(n)$
 $n^2 + 6n + 1$

3)
$$g(n) = -n^2 - 3$$

 $h(n) = 3n + 2$
Find $g(n) \cdot h(n)$
 $-3n^3 - 2n^2 - 9n - 6$
 $(-h^3 - 3)(3n + 3)$

2)
$$h(t) = t + 3$$

 $g(t) = t^2 + 1$
Find $h(t) - 2g(t)$
 $-2t^2 + t + 1$

4)
$$g(a) = -a + 5$$

 $h(a) = a^3 + 4$
Find $g(a) + h(a)$
 $a^3 - a + 9$

5)
$$f(x) = -2x - 3$$

 $g(x) = x^3 + 3$
Find $f(x) \cdot g(x)$
 $-2x^4 - 3x^3 - 6x - 9$

7)
$$g(n) = n - 2$$

 $h(n) = -n^2 + 5n$
Find $g(n) + h(n)$

$$-n^2 + 6n - 2$$

6)
$$g(x) = x^2 + 2x$$

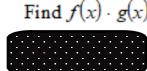
 $f(x) = -3x + 1$
Find $g(x) - f(x)$
 $x^2 + 5x - 1$

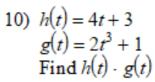
8)
$$h(a) = a^2 + 5$$

 $g(a) = 3a - 5$
Find $h(a) \cdot g(a)$
 $3a^3 - 5a^2 + 15a - 25$

9) g(t) = 2t + 2 $h(t) = t^2 - 3t$ Find g(t) + h(t)

11) f(x) = x - 5g(x) = 2xFind $f(x) \cdot g(x)$





12)
$$h(x) = -x + 1$$

 $g(x) = x^2 - 1$
Find $2h(x) - g(x)$

