http://www.youtube.com/watch?v=fVq4_HhBK8Y

Airplane

$$||v|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||v|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$||x|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Find a unit vector in the direction of $\mathbf{v} = \langle -8, 6 \rangle$.

$$rac{
u}{\|
u\|}$$

Find a unit vector u in the direction of $v = \langle 7, -3 \rangle$ and verify that the result has magnitude 1.

find the unit vector then use in
$$||v|| = \sqrt{(v_1)^2 + (v_2)^2}$$

$$<\frac{7}{158} > \frac{3}{158} >$$

Find the vector v with the given magnitude and same direction as u.

$$||v|| = 3 \qquad u = \langle 4, -4 \rangle$$

$$v = \sqrt{4^2 + (-4)^2} = \sqrt{32}$$

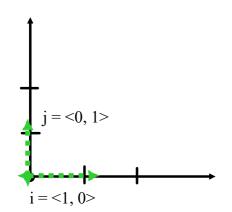
$$3 \langle \frac{4}{\sqrt{32}}, \frac{-4}{\sqrt{32}} \rangle$$

$$\langle \frac{12}{\sqrt{32}}, \frac{-12}{\sqrt{33}} \rangle$$

find the unit vector multiply it by the magnitude

Standard Unit Vectors:

$$i = <1, 0> j = <0, 1>$$



Linear Combination

Vector
$$\mathbf{v} = \langle v_1, v_2 \rangle$$

can also be represented as:

$$\mathbf{v} = \langle v_1, v_2 \rangle$$

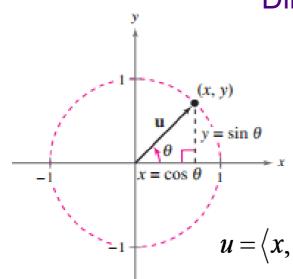
$$= v_1 \langle 1, 0 \rangle + v_2 \langle 0, 1 \rangle$$

$$= v_1 \mathbf{i} + v_2 \mathbf{j}$$

$$\langle t_1, t_2 \rangle \Rightarrow b \dot{t} + f \dot{t}$$

Let $\mathbf{v} = \langle -5, 3 \rangle$. Write \mathbf{v} as a linear combination of the standard unit vectors \mathbf{i} and \mathbf{j} .

Direction Angles



If \mathbf{u} is a unit vector such that θ is the angle (measured counter clockwise) from the positive x-axis to u, then the terminal point of \mathbf{u} lies on the unit circle

$$u = \langle x, y \rangle = \langle \cos \theta, \sin \theta \rangle = \cos \theta i + \sin \theta j$$

The angle θ is the direction angle of vector u.

$$v = ||v|| \langle \cos \theta, \sin \theta \rangle = ||v|| (\cos \theta) i + ||v|| (\sin \theta) j$$

Vector \mathbf{v} has direction angle $\theta = 30^{\circ}$ and magnitude 6. Find \mathbf{v} .

$$v = \|6\| \langle \cos 30^o, \sin 30^o \rangle = \|v\| (\cos \theta) i + \|v\| (\sin \theta) j$$

$$\tan \theta = \frac{\|v\| \sin \theta}{\|v\| \cos \theta} = \frac{b}{a}$$
v=ai + bj

You must pay attention to what quadrant you are in!

Find the direction angle of each vector.

a.
$$u = 3i + 3j$$

$$u=ai+bj$$

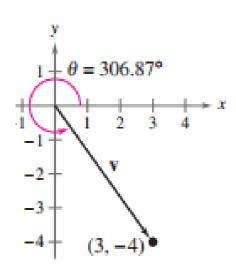
$$3 - (3,3)$$

$$2 - u$$

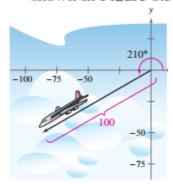
$$1 - \theta = 45^{\circ}$$

$$\tan \theta = \frac{\|v\| \sin \theta}{\|v\| \cos \theta} = \frac{b}{a} \qquad \frac{3}{3} = 1$$

b.
$$v = 3i - 4j$$



Find the component form of the vector that represents the velocity of an airplane descending at a speed of 100 miles per hour at an angle of 30° below the horizontal, as shown in Figure 6.32.



The velocity vector v has a magnitude of 100 and a direction angle of $\theta = 210^{\circ}$

$$\mathbf{v} = \|\mathbf{v}\|(\cos \theta)\mathbf{i} + \|\mathbf{v}\|(\sin \theta)\mathbf{j}$$
= $100(\cos 210^{\circ})\mathbf{i} + 100(\sin 210^{\circ})\mathbf{j}$
= $100\left(-\frac{\sqrt{3}}{2}\right)\mathbf{i} + 100\left(-\frac{1}{2}\right)\mathbf{j}$
To find the angle:
$$\tan \theta = \frac{-50}{-50\sqrt{3}}$$
= $(-50\sqrt{3}, -50)$

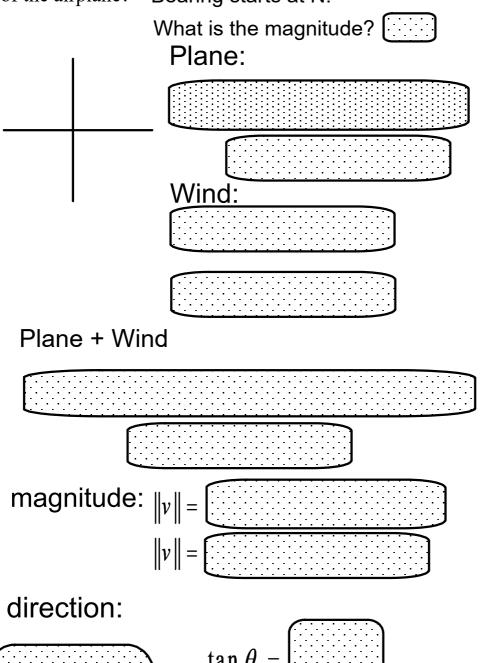
You can check that v has a magnitude of 100 as follows.

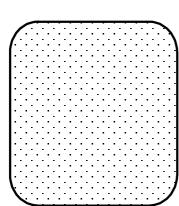
$$\|\mathbf{v}\| = \sqrt{(-50\sqrt{3})^2 + (-50)^2}$$

= $\sqrt{7500 + 2500}$
= $\sqrt{10,000}$
= 100 Solution checks.

Using Vectors to Find Speed and Direction Example 10 p.416

An airplane is traveling at a speed of 500 mph with a bearing of 330°. The airplane encounters a wind blowing 70 mph in the direction N 45° E. What are the resultant speed and direction of the airplane? Bearing starts at N.





The initial point of a vector is (-6, 4) and the terminal point is (0, 1) Write a linear combination of the standard vector.

Find the component form of V given its magnitude and angle.

$$||v|| = 4$$
, $\theta = 45^{\circ}$

Applications of Vectors

force / velocity / tension = magnitude / length

also think: Geometry, right triangle trig, law of cosines and sines

Highlight of Important Vocab / Formulas:

Component Form: $\mathbf{v} = \langle \mathbf{v_1}, \mathbf{v_2} \rangle$ found by subtracting x values and y values of points

found by:
$$\frac{Magnitude: ||v||}{\sqrt{v_1^2 + v_2^2}} \text{ or the distance formula}$$
Unit Vector: $\underline{\mathbf{v}}$

$$||v||$$

Linear Combination of v: $\mathbf{v_1}\mathbf{i} + \mathbf{v_2}\mathbf{j}$

Direction Angles:
$$\mathbf{v} = ||\mathbf{v}|| \cos \theta ||\mathbf{i}|| + ||\mathbf{v}|| \sin \theta ||\mathbf{j}||$$

If $\mathbf{v} = \mathbf{a}\mathbf{i} + \mathbf{b}\mathbf{j}$, then $\tan \theta = \frac{b}{a}$

Using Vectors to Find Speed and Direction

An airplane is traveling at a speed of 500 mph with a bearing of 330°. The airplane encounters a wind blowing 70 mph in the direction N 45° E. What are the resultant speed and direction of the airplane?

Using Vectors to Find Speed and Direction Example 10 p.416

o clockwise from N II vil= 500

An airplane is traveling at a speed of 500 mph with a bearing of 330°. The airplane encounters a wind blowing 70 mph in the

direction N 45° E. What are the resultant speed and direction

of the airplane?

