Perform the indicated operation.

1)
$$f(x) = 2x - 1$$

 $g(x) = x^2 + 3$
Find $f(g(x))$
 $2x^2 + 5$

3)
$$f(x) = 3x + 4$$

 $g(x) = 4x + 5$
Find $f(g(x))$

$$16x^2 + 40x + 29$$

3)
$$f(x) = \mathfrak{D}^2 + 4$$
 $(4 \times + 5)^2 + 4$ $(4 \times + 5)^2 + 4$

2)
$$g(n) = n + 2$$

 $h(n) = n^3 + 2n$
Find $g(h(n))$
 $n^3 + 2n + 2$

4)
$$f(t) = -3t + 3$$

 $g(t) = t^2 - 4$
Find $f(g(t))$
 $-3t^2 + 15$

6.4

Notes: Inverse Functions

Notes! In	verse Functions
Original Function	Inverse Function
f(x) $g(x)=$	$\int_{S^{-1}(x)}$

Fou	r Rep	presenta	tions: T	'ables-	_	
Or	igina	I Funct	ion	Inve	rse Fu	ınction
$\neg \lceil$	Х	f(x)			Х	f-1(x)
	5	6			<u></u>	5
	3	8			<u> </u>	3
	1	10			10	1
	-1	12			12	-1
	-3	14		-	14	- 3
	-5	16			16	- 5
	-7	18			14	-1

1. f(x) = 3x + 5

Graphically (Graph)
In BLACK graph f(x)In BLUE graph $f^{-1}(x)$ In ANOTHER COLOR graph $f(f^{-1}(x))$ LABEL YOUR GRAPHS!

Analytically (Equation)

a. Find $f^{-1}(x)$ algebraically. x = 3y + 55

b. Show that $f(f^{-1}(x)) = x$ x = 3y + 5 x = 3y + 5

$$\frac{3x+5-5}{3} = \frac{3x}{3} = x$$

Verbally (Words)

a. Explain how you know from the graph that f(x) and $f^{-1}(x)$ are inverses.

They reflect about the line symmetry of y=x.

b. Explain how you know from the algebra that f(x) and $f^{-1}(x)$ are inverses.

$$f(k_{-1}(x) = x \qquad f_{-1}(kx) = x$$

c. Explain how you know from the tables that f(x) and $f^{-1}(x)$ are inverses.

Notes!	Inverse Functions
Four Representation	ons: Equations
Replace f(x) with	У
Switch the x and	y and solve for y
Original Function	mivolog i dilottori
f(x) = 2x + 3	$f^{-1}(x) = \frac{x-3}{2}$
y = 2x + 3	
x= 38+3	
x-3=3ñ	
7 = x-3	
-	

Notes! Inv	erse Functions			
Try it on g	Try it on your own:			
Original Function	Inverse Function			
, ,	$f^{-1}(x) = \frac{x-c}{5}$			
y = 5x + 6 x = 5y + 6 -6				
5 5				

Notes! Inv	verse Functions
Try it on	your own:
Original Function	Inverse Function
$f(x) = \frac{3x-1}{2}$	$f^{-1}(x) = \frac{2 \times + 1}{3} \frac{2}{n} \frac{1}{3} \frac{1}{3}$
$h = \frac{3x-1}{5}$	
3x=39-1x	
2x = 3y - 1 $3x + 1 = 3c$	
3/3×+1/3	

Notes!

Inverse Functions

Verify that the two functions are inverses of one another.

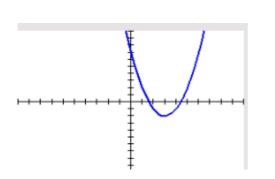
Do the composite of your original and your inverse. If both are equal to x then they are inverses. $f(f^{-1}(x)) = x - f^{-1}(f(x)) = x$

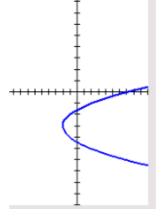
$$f(x) = 4x + 2$$

$$f^{-1}(x) = \frac{1}{4}x - \frac{1}{2}$$

$$\frac{1}{4}(\frac{1}{4}x - \frac{1}{4}) + 2}{\frac{1}{4}(\frac{1}{4}x - \frac{1}{4}) - \frac{1}{3}}{\frac{1}{4}(\frac{1}{4}x - \frac{1}{4}) - \frac{1}{3}}$$

Inverse Functions

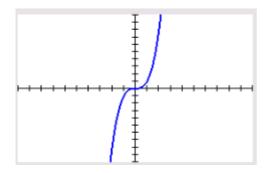

Functions f and g are inverses of each other provided:


$$f(g(x)) = x$$
 and $g(f(x)) = x$

The function g is denoted by f⁻¹, read as "f inverse".

Given any function, you can always find its inverse relation by switching x and y. Then solve for y.

Recall: How can you tell whether a relation is a function?

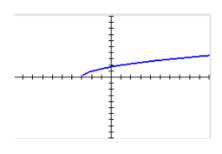

One-to-One
Both the original and the inverse are functions.

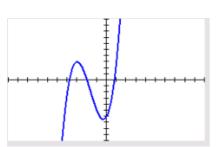
Vertical line test

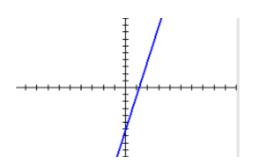
If a vertical line intersects the graph of a function f more than once, then the inverse of f is itself a function.

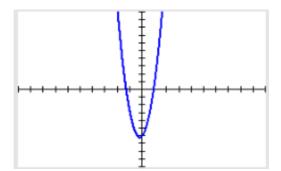
Horizontal line test

If a horizontal line intersects the graph of a function f more than once, then the inverse of f is itself a function.

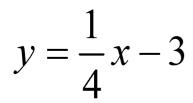



Vertical line Test


Horizonal line test

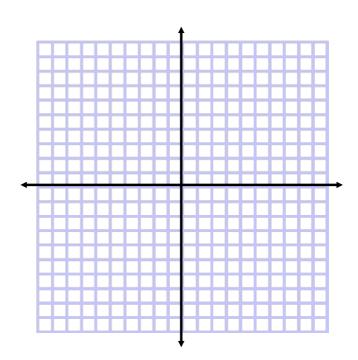

If both horizontal and veritcal line tests hold true, then it is one-to-one.

Is it a one-to-one function?



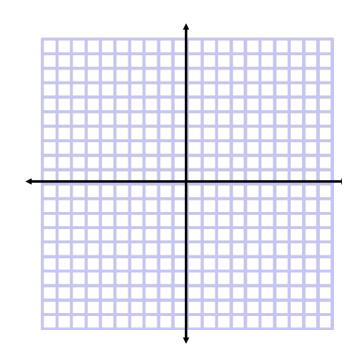
Inverse Functions
Verify that the two functions are inverses of
one another. Now you try
$f(x) = 3x - 5 \qquad f^{-1}(x) = \frac{1}{3}x + \frac{5}{3}$

Notes! Graphing Inverse Functions
Four Representations: Graphing
Steps to graphing an inverse function:
1. Find the inverse function
2. Create a table
3. Evaluate the range
4. Plot inverse points
5. Verify using the y=x reflection line.


X	Y

X	Y
	-
	_

$$y = \frac{1}{2}x + 4$$


X	Y

What about this...

$$y = (x - 2)^2$$

X	Y

4 representations (Inverses) WS #5.pdf

4 representations (Inverses) WS #5.pdf