Sketch the curve described by the parametric equations:

$$x = t - 3$$

 $y = t^2 + 1, -1 \le t \le 3$

You are familiar with plotting with a rectangular coordinate system.

(0,0) X

We are going to look at a new coordinate system called the polar coordinate system.

10° polar graph vs 15° polar graph

The center of the graph is called the pole.

Angles are measured from the positive *x* axis.

Points are represented by a radius and an angle

$$(r, \theta)$$

Graph:
$$(2, \frac{\pi}{3})$$

$$(-\lambda, \frac{4\pi}{3})$$

Plot the point

$$\left(3, -\frac{3\pi}{4}\right)$$

and find three additional polar representations of this point, using

$$-2\pi < \theta < 2\pi$$
.

The point is shown in Figure 9.63. Three other representations are as follows.

$$\left(3, -\frac{3\pi}{4} + 2\pi\right) = \left(3, \frac{5\pi}{4}\right)$$

$$\left(-3, -\frac{3\pi}{4} - \pi\right) = \left(-3, -\frac{7\pi}{4}\right)$$
 Replace r by $-r$; subtract π from θ .

Coordinate Conversion

Polar to Rectangular

$$x = r\cos(\theta) \qquad \qquad 2\cos\frac{\pi}{3}$$

$$y = rsin(\theta)$$

Convert to rectangular coordinates:

(2,
$$\frac{\pi}{3}$$
) $\theta = \frac{\pi}{3}$ (1, r_3)

Graph. Then find rectangular coordinates.

$$(5, \frac{-\pi}{6})$$

$$(-5, \frac{\pi}{4})$$

$$(-2, \frac{11\pi}{4})$$

Find 3 more ways to represent:

$$(4, \frac{\pi}{6})$$

- 1. r = directed distance from O to P
- 2. $\theta = directed \ angle$, counterclockwise from the polar axis to segment \overline{OP}

Coordinate Conversion

Rectangular to Polar

$$\tan(\theta) = \frac{y}{x}$$

$$r^2 = x^2 + y^2$$

Convert to polar coordinates:

Plot the point. Then find two sets of polar coordinates for the point for $0 \le \theta < 2\pi.$

$$(0, -5)$$

Polar to Rectangular

 $x = rcos(\theta)$

 $y = rsin(\theta)$

Rectangular to Polar Coordinates

$$\tan(\theta) = \frac{y}{x}$$
$$r^2 = x^2 + y^2$$

$$r^2 = x^2 + y^2$$

Coordinate Conversion

The polar coordinates (r, θ) are related to the rectangular coordinates (x, y) as follows.

Polar-to-Rectangular

Rectangular-to-Polar

$$x = r \cos \theta$$

$$\tan \theta = \frac{y}{x}$$

$$y = r \sin \theta$$

$$r^2 = x^2 + y^2$$

Polar-to-Rectangular Conversion

Convert the point $(2, \pi)$ to rectangular coordinates.

For the point $(r, \theta) = (2, \pi)$, you have the following.

$$x = r \cos \theta = 2 \cos \pi = -2$$

$$y = r \sin \theta = 2 \sin \pi = 0$$

The rectangular coordinates are (x, y) = (-2, 0). (See Figure 9.65.)

Figure 9.65

Rectangular-to-Polar Conversion

Convert the point (-1, 1) to polar coordinates.

For the second-quadrant point (x, y) = (-1, 1), you have

$$\tan \theta = \frac{y}{x} = \frac{1}{-1} = -1$$

$$\theta = \frac{3\pi}{4}.$$

Because θ lies in the same quadrant as (x, y), use positive r.

$$r = \sqrt{x^2 + y^2} = \sqrt{(-1)^2 + (1)^2} = \sqrt{2}$$

So, one set of polar coordinates is

$$(r, \theta) = \left(\sqrt{2}, \frac{3\pi}{4}\right)$$

Figure 9.66

Practice Problem:

$$x^2 + y^2 = 16$$

What does
$$x^2 + y^2 = ?$$

$$x^2 + y^2 = r^2$$

$$r^2 = 16$$

$$r = 4$$