KEY CONCEPT

For Your Notebook

Definition of Logarithm with Base b

Let *b* and *y* be positive numbers with $b \ne 1$. The **logarithm of** *y* **with base** *b* is denoted by $\log_b y$ and is defined as follows:

$$\log_b y = x$$
 if and only if $b^x = y$

The expression $\log_b y$ is read as "log base b of y."

$$2^3 = 8$$

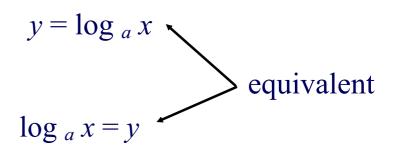
$$\log_2 8 = 3$$

$$3^2 = 9$$

$$\log_3 9 = 2$$

What is a logarithm?

A logarithm is an **EXPONENT**



it is said, "log base a of x is y."

Exponential form

$$a^y = x$$

 $\log_a x = y \quad \text{and} \quad a^y = x$

ARE EQUIVALENT

EXAMPLE 1 Rewrite logarithmic equations

Logarithmic Form

a.
$$\log_2 8 = 3$$

b.
$$\log_4 1 = 0$$

c.
$$\log_{12} 12 = 1$$

d.
$$\log_{1/4} 4 = -1$$

Exponential Form

$$2^3 = 8$$

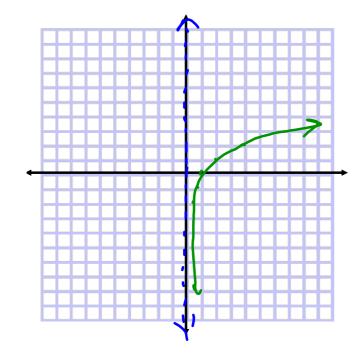
$$4^0 = 1$$

$$12^1 = 12$$

$$\left(\frac{1}{4}\right)^{-1} = 4$$

Logarithmic Functions and Their **Graphs**Graphs of logarithms:

$$y = \log_2 x$$



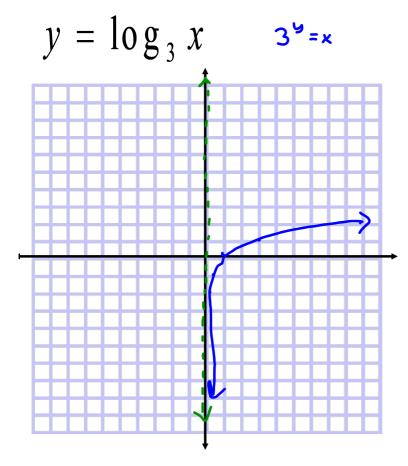
Domain=
$$(0,+\infty)$$

Range= $(-\infty,+\infty)$
asymptote $x=0$

Rewrite as an exponential

$$y = \log_2 x$$
 $2^{3} = x$

	X	У
x=2 ^y	1/4	-2
	1/2	-1
	Í	0
	2	1
	Ч	2



Domain=
$$(0, + 0)$$

Range= $(-\infty, + 0)$
Asymptote $\times = 0$

What is the
$$\frac{x}{1/4}$$
 inverse? $\frac{x}{1/4}$ $\frac{-2}{-1}$ $\frac{1}{2}$ $\frac{1}{2}$

Graph of $f(x) = \log_a x$, a > 1

Domain: $(0, \infty)$

Range: $(-\infty, \infty)$

Intercept: (1, 0)

Increasing on $(0, \infty)$

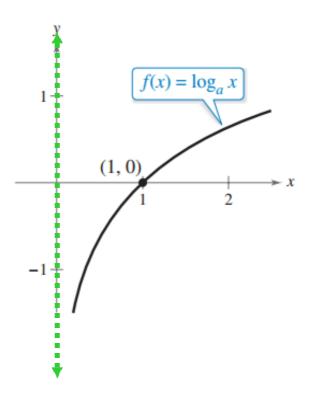
y-axis is a vertical asymptote

 $(\log_a x \to -\infty \text{ as } x \to 0^+)$

Continuous

Reflection of graph of $f(x) = a^x$ in the line y = x

Asymptote x=0



TRANSLATIONS You can graph a logarithmic function of the form $y = \log_b (x - h) + k$ by translating the graph of the parent function $y = \log_b x$.

EXAMPLE 8 Translate a logarithmic graph

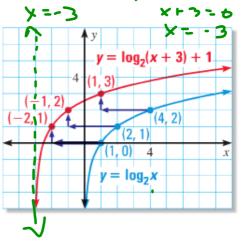
Graph $y = \log_2 (x + 3) + 1$. State the domain and range.

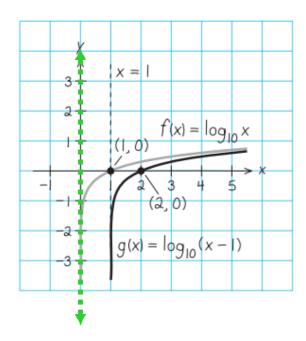
1,95 (x-h)+K

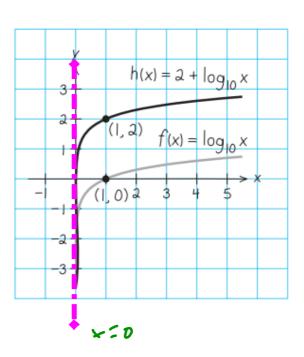
Solution

STEP 1 Sketch the graph of the parent function $y = \log_2 x$, which passes through (1, 0), (2, 1), and (4, 2).

STEP 2 Translate the parent graph left 3 units and up 1 unit. The translated graph passes through (-2, 1), (-1, 2), and (1, 3). The graph's asymptote is x = -3. The domain is x > -3, and the range is all real numbers.







a.
$$f(x) = 2^x$$

b.
$$g(x) = \log_2 x$$

Solution

a. For $f(x) = 2^x$, construct a table of values. By plotting these points and connecting them with a smooth curve, you obtain the graph of f shown in Figure 3.16.

x	-2	-1	0	1	2	3
$f(x) = 2^x$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8

b. Because $g(x) = \log_2 x$ is the inverse function of $f(x) = 2^x$, the graph of g is obtained by plotting the points (f(x), x) and connecting them with a smooth curve. The graph of g is a reflection of the graph of f in the line y = x as shown in Figure 3.16

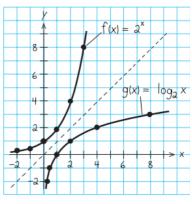
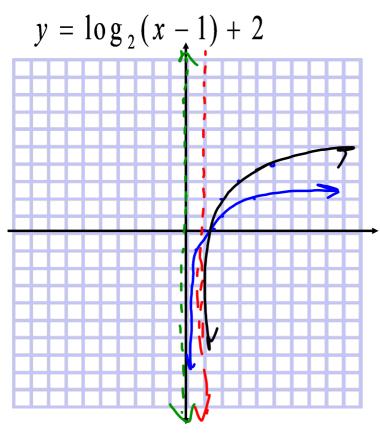
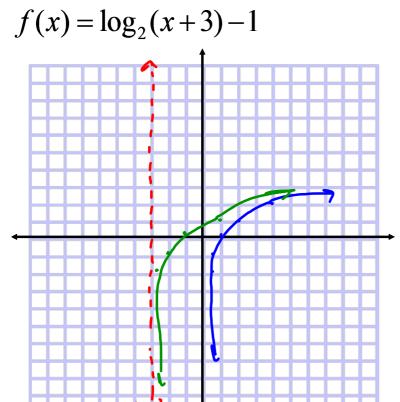


Figure 3 16





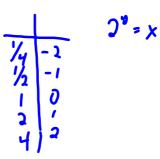
Parent Function y = 1030 × Domain (-3, +∞)

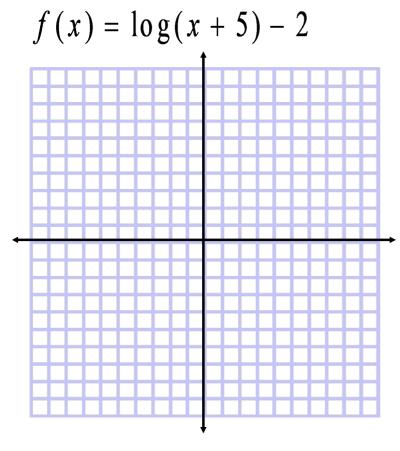
Range (-∞, +∞)

Asymptote x = -3

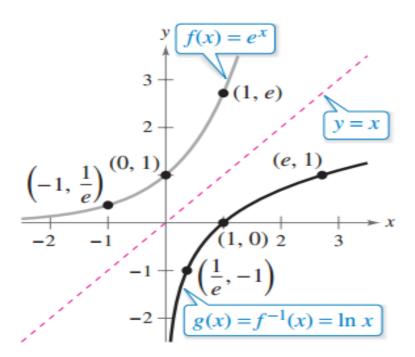
Horizontal Shift Left 3

Vertical Shift Down 1

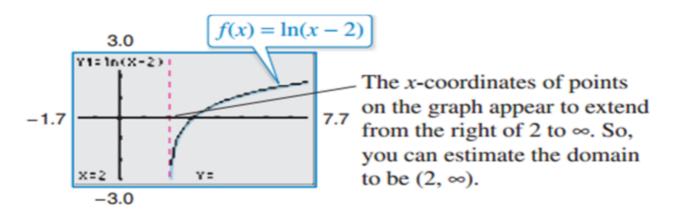




Parent Function_____
Domain____
Range____
Asymptote____
Horizontal Shift ____
Vertical Shift ____



Reflection of graph of $f(x) = e^x$ in the line y = x



When graphing with base e, same rules apply

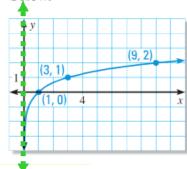
Graph the function.

a.
$$y = \log_3 x$$

Solution

a. Plot several convenient points, such as (1, 0), (3, 1), and (9, 2). The *y*-axis is a vertical asymptote.

From *left* to *right*, draw a curve that starts just to the right of the *y*-axis and moves up through the plotted points, as shown below.



Without Graphing. Find the following

a.
$$y = \log_4(x - 7) + 5$$

b.
$$y = \log_6(x+3) - 8$$

Parent Function y = 1694 x

Domain (7,+00)

Range (--, --)

Asymptote ×=7

Horizontal Shift 8:3h-47
Vertical Shift 0 p 5