Without Graphing Describe each of the following.

$$f(x) = 5\left(\frac{1}{4}\right)^{x-8} + 6$$

$$f(x) = \frac{1}{2} (4)^{x+3} - 5$$

Parent Function $y = 4^{\times}$

Asymptote y = - 5

Domain (- ∞, +∞)

Range (-5,+0)

Horizontal Shift Loft 3

Vertical Shift Down 5

Growth or Decay

Vertical Stretch or Shrink

The history of mathematics is marked by the discovery of special numbers such as π and i.

Another special number is denoted by the letter e.

The number is called the natural base e or the Euler number.

n	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶
$\left(1+\frac{1}{n}\right)^n$	2.59374	2.70481	2.71692	2.71815	2.71827	2.71828

KEY CONCEPT

For Your Notebook

The Natural Base e

The natural base e is irrational. It is defined as follows:

As
$$n$$
 approaches $+\infty$, $\left(1+\frac{1}{n}\right)^n$ approaches $e\approx 2.718281828$.

Evaluate the expression

$$\left(1+\frac{1}{x}\right)^x$$

for several large values of x to see that the values approach

$$e \approx 2.718281828$$

as x increases without bound.

Graphical Solution

Figure 3.10

VCHECKPOINT Now try Exercise 27.

Numerical Solution

Figure 3.11

From Figure 3.11, it seems reasonable to conclude that

$$\left(1 + \frac{1}{x}\right)^x \to e \text{ as } x \to \infty.$$

Simplify the expression.

a.
$$e^2 \cdot e^5 = e^{2+5}$$

= e^7

b.
$$\frac{12e^4}{3e^3} = 4e^{4-3}$$
$$= 4e$$

c.
$$(5e^{-3x})^2 = 5^2(e^{-3x})^2$$

= $25e^{-6x} = \frac{25}{e^{6x}}$

a.
$$y = 3e^{0.25x}$$

Solution

a. Because a = 3 is positive and r = 0.25 is positive, the function is an exponential growth function. Plot the points (0, 3) and (1, 3.85) and draw the curve.

The domain is all real numbers, and the range is y > 0.

b.
$$y = e^{-0.75(x-2)} + 1$$

b. a = 1 is positive and r = -0.75 is negative, so the function is an exponential decay function. Translate the graph of $y = e^{-0.75x}$ right 2 units and up 1 unit.

The domain is all real numbers, and the range is y > 1.

Compound interest: Interest paid on the initial investment called the principal and on previously earned interest.

Simple interest: Interest paid only on the principal.

4 Formulas

you will need to have memorized for Test 6a

Exponential Growth

$$y = a(1+r)^{t}$$

Compound Interest

$$A = P\left(1 + \frac{r}{n}\right)^{nk}$$

Exponential Decay

$$y = a(1-r)^{t}$$

Continuously Compounded Interest

$$A = Pe^{rt}$$

Exponential Growth

Exponential Decay

$$y = a(1+r)^t$$

$$y = a(1-r)^t$$

a represents: __principal (initial amount)

r represents: rate as a decimal

t represents: ______

y represents:

Exponential Growth

Exponential Decay

$$y = a(1+r)^t$$

$$y = a(1-r)^t$$

How are these formulas the same and different?

How is the base of each formula affected by the differences?

The value of a snowmobile has been decreasing by 7% each year since it was new. After 3 years, the value is \$3000. Find the original cost of the snowmobile.

$$y = a(1-r)^{t}$$

$$3000 = a(1-.07)^{3}$$

$$3000 = a(.804)$$

$$8373!.34$$

COMPUTERS In 1996, there were 2573 computer viruses and other computer security incidents. During the next 7 years, the number of incidents increased by about 92% each year.

9: 2573 (17.92)

Is this growth or decay?

247484.72

How many incidents were there in 2003?

Dare Devil #3 was bought in 1987 for \$15. It's value increases every year at 12%.

How much is it worth this year?

I want to sell it for \$1000.

What year will it be worth \$1000?

SNOWMOBILES A new snowmobile costs \$4200. The value of the snowmobile decreases by 10% each year.

How much will the snowmobile be worth after 4 years?

When will the snowmobile be worth 1/3 its original price (hint: graph and find a point when y is 1/3 the original cost)?

Compounded Interest

A = amount after time
$$A = P \left(1 + \frac{r}{r} \right)^{rt}$$
P = principal (initial amount)

r = interest rate (25 2 decimal)

n = # times compounded per year

t = time

Interest Compounded Continuously:

$$A = Pe^{rt}$$

Formulas for Compound Interest

After t years, the balance A in an account with principal P and annual interest rate r (in decimal form) is given by the following formulas.

- 1. For *n* compoundings per year: $A = P\left(1 + \frac{r}{n}\right)^{nt}$
- 2. For continuous compounding: $A = Pe^{rt}$

You deposit \$5500 in an account that pays 3.6% annual interest. Find the balance after 2 years if interest is compounded with the given frequency.

Compound

a. semiannually

A = 5500
$$\left(1 + \frac{036}{12}\right)^{12}$$

A = 5500 $\left(1 + \frac{036}{12}\right)^{12}$

F = 45906, 83

F = 406, 82

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

Interest

```
yearly = 1
Quarterly = 4
Monthly = 12
Daily = 365
```

You deposit \$4000 in an account that pays 2.29% annual interest. Find the balance after 5 years if the interest is compounded with the given frequency:

- a. Yearly
- b. Quarterly
- c. Monthly
- d. Daily

You put \$ 20,000 in an account for 5 years at 6 % interest compounded:

annually	monthly	quarterly	daily	continuously

Which account will pay the most?

A lot more, or only a little more?

WHY??

Class Work: pg 484 (#35 - 38) pg 490 (#31, #33)

- **35. DVD PLAYERS** From 1997 to 2002, the number n (in millions) of DVD players sold in the United States can be modeled by $n = 0.42(2.47)^t$ where t is the number of years since 1997.
 - Identify the initial amount, the growth factor, and the annual percent increase.
 - **b.** Graph the function. Estimate the number of DVD players sold in 2001.
- **36. INTERNET** Each March from 1998 to 2003, a website recorded the number y of referrals it received from Internet search engines. The results can be modeled by $y = 2500(1.50)^t$ where t is the number of years since 1998.
 - Identify the initial amount, the growth factor, and the annual percent increase.
 - b. Graph the function and state the domain and range. Estimate the number of referrals the website received from Internet search engines in March of 2002
- (37.) **ACCOUNT BALANCE** You deposit \$2200 in a bank account. Find the balance after 4 years for each of the situations described below.
 - a. The account pays 3% annual interest compounded quarterly.
 - **b.** The account pays 2.25% annual interest compounded monthly.
 - c. The account pays 2% annual interest compounded daily.
- 38. DEPOSITING FUNDS You want to have \$3000 in your savings account after 3 years. Find the amount you should deposit for each of the situations described below.
 - a. The account pays 2.25% annual interest compounded quarterly.
 - b. The account pays 3.5% annual interest compounded monthly.
 - c. The account pays 4% annual interest compounded yearly.

- **31. BIKE COSTS** You buy a new mountain bike for \$200. The value of the bike decreases by 25% each year.
 - **a.** Write a model giving the mountain bike's value *y* (in dollars) after *t* years. Use the model to estimate the value of the bike after 3 years.
 - **b.** Graph the model.
 - c. Estimate when the value of the bike will be \$100.
- **SHORT RESPONSE** The value of a car can be modeled by the equation $y = 24,000(0.845)^t$ where t is the number of years since the car was purchased.
 - a. Graph the model. Estimate when the value of the car will be \$10,000.
 - **b.** Use the model to predict the value of the car after 50 years. Is this a reasonable value? *Explain*.